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3 Facultad de Ingenieŕıa, University of Buenos Aires, Argentina
clacian@fi.uba.ar

4 Facultad de Agronomı́a, University of Buenos Aires, Argentina
fbert@mail.agro.uba.ar

Summary. Simulated outcomes of agricultural production decisions in the Argen-
tine Pampas were used to examine “optimal” land allocations among different crops
identified by maximization of the objective functions associated with expected util-
ity and prospect theories. We propose a more mathematically tractable formulation
for the prospect theory value-function maximization, and explore results for a broad
parameter space. Optimal actions differ among some objective functions and pa-
rameter values, especially for land tenants, whose enterprise allocation is less con-
strained by rotations. Our results demonstrate in a nonlaboratory decision context
that psychologically plausible deviations from EU maximization matter.

1 Introduction

The world faces the dual challenge of feeding a burgeoning 21st century pop-
ulation of perhaps 9 billion, while at the same time not depleting its ecosys-
tems that sustain life and well-being. In recent decades, agricultural output
succeeded in outpacing human population growth and has reduced famine.
As the food supply must continue to expand, however, it must do so with re-
duced environmental consequences [29]. New environmental information and
its innovative usage will be central to this expansion.

Agricultural stakeholders consistently rank climate variability among the
top sources of risk to production or profits. The use of climate information
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worldwide is evolving. Whereas decisions used to be based on analysis of his-
torical records, now there is an increasing capability to monitor and predict
seasonal regional climate. The increase in scientific and technological capa-
bilities, an increasing appreciation for the importance of climate on human
endeavors (including sustainable development, poverty mitigation, and food
security), and a greater demand for climate information are all providing
greater incentives for the provision of climate services, which can be defined
as the timely production and delivery of useful climate data, information, and
knowledge to decision makers [7,30].

On seasonal-to-interannual scales, the El Niño–Southern Oscillation
(ENSO) phenomenon is the major single source of climate variability in many
parts of the world [38]. The emerging ability to forecast regional climate based
on ENSO [2,11,23] offers agricultural decision makers the opportunity to mit-
igate unwanted impacts and take advantage of expected favorable conditions
[15,18,27,28]. However, any efforts to foster effective use of climate informa-
tion and forecasts in agriculture must be grounded in a firm understanding of
the goals, objectives, and constraints of decision makers in the target system,
for three reasons.

First, climate data, forecasts, and technical assistance with the use of cli-
mate information are often publicly provided and highly subsidized. Estimates
of the economic value of climate information and forecasts help justify invest-
ments in such publicly provided technology and infrastructure by compar-
ing rates of return to those available from investments in other innovations.
Research that estimates value of information (VOI) by simulating optimal
forecast responses can provide useful insights, but actual use of climate in-
formation in agricultural production decisions and the production decisions
themselves will most likely deviate from the prescriptions of normative mod-
els. Tests and validations of alternative descriptive models of risky decision
making and probabilistic information use are thus crucial to obtaining real-
istic estimates of the value added from climate information. Estimates of the
value of climate information should be based on alternative models closely
linked to observed decision processes. The impact of alternative assumptions
about decision processes and goals needs to be examined.

Second, the goals and objectives of farmers’ decisions (i.e., their objective
functions, in decision-theoretical terms) influence how climate information
(both historical data and forecasts) is used. In turn, this has implications
for how climate information should be presented and communicated (i.e., the
design of climate forecasts and tutorials on climate information use). Deci-
sions on the current contents and formats of climate forecasts make implicit
assumptions about what farmers are trying to achieve and how such infor-
mation will be used. It will be useful to make these assumptions explicit and
put them to test. The probabilistic nature of climate forecasts needs emphasis
and explanation for all users, as probabilistic thinking is a relatively recent
evolutionary accomplishment [13] and not something that comes naturally
to even highly trained professionals [8]. Nevertheless, the expectation of a
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deterministic forecast that will turn out to be either “correct” or “false” is
especially damaging in situations where the decision maker will experience
postdecisional regret after believing that she acted on a “false” forecast. Bet-
ter understanding of the outcome variables that matter to farmers also will
provide guidelines on whether and how best to “translate” climate forecasts.
If, for example, crop yields or the costs of production input get particular
attention, it makes sense to “translate” a climate forecast into the agronomic
yield and/or cost implications that it holds.

Third, decision makers in numerous domains have been shown to have poor
insight into their own decision processes and goals and objectives. This offers
opportunities for interventions to help farmers to enhance their decisions.
When made aware of the objective function and goals implicit in their past
decisions, decision makers tend to react in one of two ways. Some are surprised
by identified objectives and the associated cues or information they are using
in their decisions. Furthermore, once aware of these objectives and cues, these
decision makers may wish they were not using them: examples may include
unconscious gender discrimination in hiring decisions, or possibly crop yield
maximization rather than profit maximization in farm production decisions.
Other decision makers may concur with identified goals, objectives, and their
associated information cues once made apparent to them, and refuse to give
up on them (e.g., greater sensitivity to losses than to gains), even if they
violate normative models. Identification of objective functions and decision
goals will provide feedback to farmers about their implicit decision processes,
which can then be reviewed and either explicitly acknowledged and accepted,
or rejected, leading to the modification of decision processes.

2 Background

2.1 Choice Theories: Expected Utility and Prospect Theory

The work by von Neumann and Morgenstern [40] provided an explicit for-
mulation of expected utility (EU) and an axiomatic foundation. Subsequent
extensions and variations are described by Schoemaker [37]. The EU model has
been central in the analysis of choice under risk and uncertainty. It has been
successful not only because of its compelling axiomatic foundation and ability
to describe economic choices, but also because of its mathematical tractability
[41]. Despite its obvious strengths, EU maximization as the (sole) objective of
risky choice has encountered some opposition in recent years. There is both
experimental and real-world evidence that individuals often do not behave in
a manner consistent with EU theory [4,24]. A central assumption of EU the-
ory is that the utility of decision outcomes is determined entirely by the final
wealth they generate regardless of context, that is, that it is an absolute or
reference-independent construct. Yet, decision-makers’ evaluation of outcomes
appears to be influenced by a variety of relative comparisons [19].
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Prospect theory (PT) [20] and its modification, cumulative prospect theory
[9,39], currently have become the most prominent alternatives to EU theory.
Prospect theory formalizes one type of relative comparison observed when
decision makers evaluate the utility of decision outcomes. Its value function
V (·) is defined in terms of relative gains or losses, that is, positive or negative
deviations from a reference point. Value therefore is determined by changes
in wealth, rather than reference-independent states of wealth as in utility
theory [19]. Furthermore, the value function for losses is steeper than the
value function for gains, resulting in a sharp kink at the reference point. This
feature of the value function models the phenomenon of loss aversion, that
is, the observation that the negative experience or disutility of a loss of a
given magnitude is larger than the positive experience or utility of a gain
of the same magnitude. Empirical studies have consistently confirmed loss
aversion as an important aspect of human choice behavior [4,5,36]. Rabin [33]
emphasized the growing importance of loss aversion as a psychological finding
which should be integrated into economic analysis.

2.2 EU Formulation

We define a risky prospect q = (p1, w1; . . . ; pn, wn) as the ensemble of possible
wealth/outcome values wi with associated probabilities pi that are nonnega-
tive and add up to one. A common formulation (p. 104 of [16]) states that a
decision maker evaluates the expected utility of prospect q as

EU(q) =
∑

i

piu(wi) . (1)

The following real-valued utility function u(·) is given by Pratt [32] as

u(w) ∝
{

w1−r

1−r if r 6= 1
ln w if r = 1

, (2)

where r is the coefficient of constant relative risk aversion (CRRA). CRRA
implies that preferences among risky prospects are unchanged if all payoffs are
multiplied by a positive constant [16]. The curvature of the utility function,
defined by parameter r, captures all information concerning risk attitude.

2.3 Prospect Theory Formulation

In prospect theory [20], the subjective value of a prospect is defined as

V (q) =
∑

i

Ω(pi)v(∆wi) , (3)

where ∆wi represents the difference between outcome wi and a reference point
wref , a free parameter that separates perceived gains from perceived losses.
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The subjective evaluation of this difference can be expressed as suggested
by Tversky and Kahneman [39], using for simplicity the same exponent for
losses and gains (which tends to be a good approximation based on empirical
estimates of the two parameters and which can, of course, be changed to the
more general case, if so desired). That assumption allows us to write the PT
value function in the following more compact form

v(∆w) =
∑

h(∆w)|∆w|α , (4)

where function h(∆w) is the step function

h(∆w) =
{

1 if ∆w ≥ 0
−λ if ∆w < 0 , (5)

and λ is a parameter (λ > 1) that reflects the degree of loss aversion. The
exponent α in (4) ranges between 0 and 1 and describes the nonlinearity of
the value function. Because of the discontinuity at the reference point, the
exponent describes the degree of risk aversion (concavity) in the gains region
and the degree of risk seeking (convexity) in the losses region.

The evaluation of risky prospects is based on subjective probability weights
that typically do not correspond to the objective probabilities. Tversky and
Kahneman [39] propose the nonlinear function Ω(p),

Ω(p) =
pγ

(pγ + (1− pγ))1/γ
, (6)

to model the subjective weight of event probabilities, which overweights objec-
tive probabilities for outcomes at the extremes of the distribution of possible
outcomes and underweights outcomes in the middle. The value of Ω(p) de-
pends on positive parameter γ, which must be empirically estimated.

3 A Case Study

We compare and contrast the objective functions or choice criteria associ-
ated with expected utility and prospect theory in a real-world optimization
problem in agricultural management. The decisions examined are related to
the production of cereals and oilseeds in the pampas region of central-eastern
Argentina, one of the most important agricultural regions in the world [14].

In particular, we examine the nature and magnitude of differences among
simulated agricultural production decisions identified as “optimal” by maxi-
mization of the objective functions associated with EU and PT. EU maximiza-
tion is a widely used criterion in agricultural economics, and thus is a useful
benchmark against which to compare the results of other objective functions.
We argue that as proven and mathematically tractable alternatives to the EU
model become available, agricultural and resource economists should at least
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begin to consider alternative objective functions and explore how they might
improve analysis and insight [41].

The case study is organized as follows. First, we describe the agricultural
production systems in the target region. We then define a set of cropping enter-
prises that encompasses a realistic range of initial soil conditions and manage-
ment options for the typical crops in the region, namely maize, soybean, and a
wheat–soybean doublecrop (wheat followed during the same cropping cycle by
a shorter-cycle soybean). Next we describe how yields and economic returns
are simulated for each cropping enterprise using historical climate data, bio-
physical models, and realistic cost estimates. These results are subsequently
used as input to optimization procedures. Finally we show and discuss optimal
enterprise allocation for the two objective functions considered.

3.1 The Area of Study

The geographic focus of this study is the region of central-eastern Argentina
known as the pampas, one of the most productive agricultural areas in the
world [14] and of major importance to the Argentine economy (51% of ex-
ports, and 12% of GDP over 1999–2001, [6]). The climate, soils, and crop-
ping systems of the Argentine pampas have been characterized by Hall et
al. [14]. In particular, we focus on the region near Pergamino (33◦ 56′ S,
60◦ 33′ W), the most productive subregion of the pampas [31]. Two charac-
teristics of agricultural production in the study region have implications for
the optimization described below. First, agriculture in the Pampas is market-
oriented and technology-intensive. As a consequence, a broad spectrum of
agronomic management options exists and can be explored in the optimiza-
tion process. Second, a considerable proportion of the area currently farmed
is not owned by the farmers exploiting it. Very short land leases (usually one
year) provide incentives for tenants to maximize short-term profits via highly
profitable crops. In contrast, landowners tend to rotate crops to steward long-
term sustainability of production and soil quality [22]. Given the differences
in decision-making goals and constraints between landowners and tenants, we
model the two groups separately.

3.2 Crop Enterprises

We defined 64 different cropping enterprises that reflect a realistic range of
cultivation options for the study area. Each enterprise involves the combina-
tion of (a) a given crop (maize, full-cycle soybean, and wheat–soybean), (b)
various agronomic decisions (cultivar/hybrid, planting date, fertilization op-
tions), and (c) a set of initial conditions (water and nitrogen in the soil at
planting) that result from previous production decisions. That is, several en-
terprises may be associated with the same crop, although involving different
management options.
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3.3 Simulation of Yields: Agronomic Models

Yields for each enterprise were simulated using the crop models in the decision
support system for agrotechnology transfer (DSSAT) package [17]: generic-
CERES [34] for maize and wheat, and CROPGRO [3] for soybean. These
models have been calibrated and validated under field conditions in several
production environments including the pampas [12,25,26]. The information re-
quired to run the DSSAT models includes: (i) daily weather data (maximum
and minimum temperature, precipitation, solar radiation), (ii) “genetic coef-
ficients” that describe physiological processes and developmental differences
among crop hybrids or varieties, (iii) a description of crop management, and
(iv) soil parameters, including soil moisture and N content at the beginning
of simulations. Historical (1931–2003) daily weather data for Pergamino pro-
vided information about category (i). Genetic coefficients, the management
options that defined the enterprises, and likely ranges of initial soil condi-
tions were provided by the Asociación Argentina de Consorcios Regionales de
Experimentación Agŕıcola (AACREA), a nonprofit farmers’ group (similar in
goals to the U.S. Agricultural Extension Services) that partnered with us in
this study. Simulations assumed no irrigation, a very infrequent practice in
the pampas. For each enterprise, 72 simulated yields were obtained (one for
each cropping cycle in the 1931–2003 historical weather record used).

3.4 Simulation of Economic Outcomes

Economic outcomes were simulated for a hypothetical 600-hectare farm, the
median size of AACREA farms in the Pergamino region. We computed net
economic returns per hectare πij for year i and enterprise j as the difference
between income and costs:

πij = YijPj − (Fj + Vij + Si + Ti) . (7)

Gross incomes per hectare YijPj were the product of simulated yield for a
year and enterprise (Yij) and a constant output price for each crop (Pj).
Assumed output prices were the median of 2000–2005 prices during the month
when most of the harvest is marketed (April, May, and January for maize,
soybean, and wheat, respectively). After deducting export taxes charged by
the Argentine government, these prices were 78.9, 166.0, and 112.0 US $ ton−1

for maize, soybean, and wheat, respectively.
Four different kinds of costs were involved in the computation of net re-

turns per hectare: (i) Fixed costs Fj for enterprise j are independent of yield.
For landowners, fixed costs included: (a) crop production inputs (e.g., fertil-
izer, seed, field labor), and (b) farmer’s salary, health insurance, and a fixed
fiscal contribution. For land tenants, fixed costs also included (c) land rental
(assumed to be 232.5 $ ha−1, equivalent to the price of 1.4 tons of soybean)
and (d) management costs (12 $ ha−1). (ii) Variable costs Vij are a function
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of yield on year i for enterprise j. These costs included: (a) harvesting costs,
estimated as 8% of gross income (YijPj), (b) transportation costs (about 10 $
ton−1), and (c) sales tax and commissions, estimated as 8% of gross income.
Variable costs were the same for landowners and tenants. (iii) Structural costs
Si are applicable only to landowners and covered: (a) maintenance of farm in-
frastructure, (b) real estate taxes, and (c) management and technical advice.
Structural costs are independent of farm activities or enterprise yields. For
the sake of simplicity, however, they were approximated following a criterion
used by AACREA: they were a percentage (23%, 18%, and 20% for maize,
soybean, and wheat–soybean, respectively) of income per ha after subtracting
variable costs (YijPj −Vij). Because structural costs are incurred even if part
of the farm is not cultivated, an implicit but not unreasonable assumption,
given the high costs of land around Pergamino, is that the entire 600-ha area
of the hypothetical farm is cultivated. (iv) Income tax Ti applies equally to
landowners and tenants and was computed as follows.

T =
{

b(π − a) + c if π ≥ a
c if π < a

, (8)

where a is a threshold income above which farmers pay an average tax rate
b = 0.32. Below a, farmers pay a minimum tax assumed to be 59.33 $ ha−1.
To simplify calculations, an average annual income π of 177.5 $ ha−1 (57.6 $
ha−1) was assumed for owners (tenants).

3.5 Optimization Procedure

A whole farm production model was used to identify optimal decisions for
the objective functions associated with EU and prospect theories. The choice
variable in the optimization is the vector x = (x1, . . . , x64) that includes
the area in the 600-hectare hypothetical farm allocated to each of the 64
alternative cropping enterprises considered. Different land amounts allocated
to the 64 enterprises were considered by the optimization of each objective
function. The optimization was performed using algorithm MINOS5 in the
GAMS software package [10].

For comparability, all objective functions are expressed in terms of a
decision-maker’s wealth, either in an absolute sense (for EU and regret-
adjusted EU), or as a difference from a specified reference level (in prospect
theory). The total wealth of a decision maker at the end of cropping year i is

wi = w0 + πi , (9)

where w0 is the decision-maker’s initial wealth (i.e., prior to production deci-
sions for year i) and πi is the farmwide income during year i, after deducting
costs. Farmwide income πi is calculated as

πi =
m∑

j=1

xjπij , (10)
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where πij is the net margin for year i and enterprise j (7) and xj is the amount
of land allocated to enterprise j (i.e., a component of the land allocation vec-
tor x).

Expected Utility Optimization

The expected utility (1) of final wealth can be expressed as:

EU(x) =
n∑

i=1

piu [wi(x)] , (11)

where pi is the probability of a given climate scenario for year i. A climate
scenario is defined as the climate conditions over an entire production cycle.
We assume that all climate scenarios in the historical record have the same
probability (i.e., pi = 1/n, where n is the number of cropping cycles in the
historical climate data, in this case, 70 years). Therefore, we can write

EU(x) =
1
n

n∑
i=1

u [wi(x)] . (12)

The next step is the optimization

max
x

EU(x) = EU(x?) , (13)

where x? = (x?
1, . . . , x

?
64) indicates the proportion of land allocated to each

enterprise that maximizes the value of EU.

Prospect Theory Value Optimization

In prospect theory, value is defined by changes in wealth rather than reference-
independent wealth states. Outcomes wi are evaluated as gains or losses with
respect to reference value wref :

∆wi = wi − wref . (14)

One plausible reference value of wealth that determines whether a farmer
thinks of another wealth level as a gain or a loss is the income wr that a
farmer could achieve with minimal effort (e.g., by renting his land) added to
the decision-maker’s initial wealth:

wref = w0 + wr . (15)

Combining (9) and (14) with (15) we obtain:

∆wi = πi − wr . (16)
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The total value function for prospect theory (3) then can be rewritten as

V (x) =
n∑

i=1

Ω(pi)v[∆wi(x)] . (17)

As for EU, all climate scenarios are assumed to have the same probability
(i.e., pi = 1/n), therefore Ω(pi) is independent of i. Rewriting (17), we obtain

V (x) =
n∑

i=1

Ω
(

1
n

)
v[∆wi(x)] , (18)

which indicates that the constant Ω(1/n) is irrelevant for the optimization;
thus one need not worry about the functional form of Ω. The optimization is
performed in a way analogous to (13):

max
x

V (x) = V (x?) . (19)

Optimizing the value function with the GAMS software [10] available to us
was problematic because of the discontinuity of function h(·) (defined in (9))
at ∆wi = 0 (where prospect theory’s value function has a sharp kink and is
not differentiable). To address the problem, we used a continuous function
h̃(·) that is numerically equivalent to h(·):

h̃(x) = 1/2 [1− λ + (1 + λ) tanh(%x)] , (20)

where % is an arbitrary parameter such that % > 1; large values of % (we used
% = 10) reproduce function h(·) more closely.

3.6 Optimization Constraints

Allocation of land to cropping enterprises differs for landowners and tenants in
the Pergamino region. Landowners tend to adhere to a rotation of crops that
offers advantages for soil conservation and control of pests and diseases [22]. In
contrast, land tenants seek high profits during short leases (usually one year)
and thus usually select enterprises with the greatest economic returns. The
clear differences in enterprise allocation between land tenure regimes suggest
that we explore optimal decisions separately for landowners and tenants.

With three major cropping systems (maize, soybean, and a wheat–soybean
double crop) the rotation advocated by AACREA allocates about 33.3% of
the land to each of these cropping systems in a given year. To allow own-
ers some flexibility in land allocation, we introduced two constraints in the
optimization procedure: land assigned to a crop could be no less than 25%,
or more than 45% of the farm area. These constraints did not apply to land
tenants, who could allocate the entire farmed area to a single crop. The lack
of allocation constraints is consistent with the observed increase in monocrop-
ping of soybean that has occurred in the pampas in the last few years [35].
A final constraint specified that 100% of the land had to be assigned to some
enterprise (i.e., no land could be left without cultivation).
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3.7 Parameter Space Explored for Each Objective Function

Each objective function has a set of parameters. In some cases, the value
of a given parameter describes a personality characteristic (e.g., degree of
risk aversion or loss aversion) that may vary among decision makers. With
no widely accepted values for parameters, a broad range of plausible values
should be considered. In this section, we describe and justify our choice of
central (or nominal) parameter values.

Expected Utility

The expected utility function has two parameters: (i) the decision-maker’s
initial wealth w0 and (ii) the risk-aversion coefficient r. Initial wealth w0 is
defined as liquid assets. For landowners, this quantity was estimated as 40%
of the value of the farm land. The definition is based on the assumption that a
farmer will not sacrifice future income potential by selling crop land, but can
borrow up to 40% of her land value. The 1994–2003 average value of land for
Pergamino was 3541 $ ha−1, making w0 equal to 1400 $ ha−1 (3541 $ ha−1

× 0.4). For land tenants, we assumed a w0 value of 1000 $ ha−1, the liquid
assets required to finance two complete cropping cycles (i.e., in case of a total
loss in one cycle, the farmer still has capital to fund a second cycle). For the
risk-aversion coefficient r, we followed Anderson and Dillon’s [1] classification:
0.5 is hardly risk averse; 1.0, somewhat risk averse (normal); 2.0, rather risk
averse; 3.0, very risk averse; and 4.0, extremely risk averse. We also included
risk indifference by considering r values of 0.0. The range of r values was the
same for owners and tenants.

Prospect Theory Value Function

The value function is defined by (i) a reference wealth wr that separates
outcomes perceived as gains and losses, (ii) a risk preference parameter α,
and (iii) a loss aversion parameter λ that quantifies the relative impact of
gains and losses. The combination of all three parameters defines risk aversion
in PT. For landowners, wr was estimated as the income easily achieved by
renting out the land instead of farming it. This value of wr was estimated
to be 232.5 $ ha−1 (a rental fee of 1.4 ton ha−1 of soybean times a price of
166 $ ton−1). For land tenants, wr was estimated as the income obtained by
placing the tenant’s initial wealth (w0 = 1000 $ ha−1, as described for EU)
in a bank for six months (the duration of a cropping season) at an annual
interest of 4% (representative of current rates in Argentina). The nominal wr

value, then, was 20 $ ha−1. For the risk-aversion parameter α and the loss-
aversion parameter λ, we used the values empirically estimated by Tversky
and Kahneman [39] of 0.88 and 2.25, respectively, for both owners and tenants,
but also explored a broader range of values.
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4 Results

This section describes the land allocations (i.e., the proportion of land assigned
to different enterprises) identified as optimal for each objective function. Only
seven out of 64 possible cropping enterprises were selected by the various
optimizations.

4.1 EU Maximization

Landowners

The enterprise allocation that maximized expected utility for landowners was
constant for the full range of initial wealth and risk aversion values explored
(Figure 1). The maximum area allowed for one crop by the optimization con-
straints defined for owners (45% of total land) was allocated to full-cycle
soybean Soy14, the enterprise with the highest average economic returns (x
= 188.1 $ ha−1) over the 70 simulated cropping cycles. Conversely, the mini-
mum area required by constraints (25%) was for maize, the crop with lowest
average profits. Ma23, the enterprise with the highest average profits for this
crop (x = 116.5 $ ha−1) was selected. The remainder of the area (30%) was
allocated to the wheat–soy enterprise SW21, which had average profits be-
tween those of full-cycle soy and maize (x = 168.8 $ ha−1). The stability of
results for all parameter combinations illustrates the importance of ecologi-
cal or logistic constraints associated with maintaining a crop rotation: these
constraints clearly override any financial or personality characteristics of a
decision maker.

Land Tenants

For land tenants, only two enterprises (full-cycle soybean Soy14 and wheat–
soybean SW21) were involved in the maximization of expected utility. Because
of the markedly lower economic profits of maize (due to higher production
costs and low prices) and the lack of areal constraints for tenants, this crop
did not appear at all in the optimal land allocations.

The relative proportions of the two selected enterprises (Soy14 and SW
21) depended on the combination of parameters. Figure 2 has four panels
with increasingly higher levels of risk aversion r (from top to bottom). In each
panel, the optimal allocation of land is shown as a function of initial wealth w0.
For a risk-neutral decision maker (r = 0; Figure 2, upper panel), the optimal
action was to allocate the entire area to the double crop enterprise SW21; this
result is constant for the entire range of values considered for w0. Because the
decision maker is risk-neutral, the selection of SW21 was based only on its
higher mean profit relative to Soy14 (77.6 $ ha−1 versus 69.4 $ ha−1), and
ignored the higher risks associated with the considerably larger dispersion of
profits (122.0 $ ha−1 versus 89.0 $ ha−1 for Soy14). For moderate risk aversion
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Fig. 1. Land allocation (as proportion of the hypothetical 600-ha farm) that max-
imizes expected utility for landowners. The selected combination of enterprises is
constant for all initial wealth w0 and risk aversion r.

values (r = 1.0; Figure 2, second panel from top) and low w0 (below about
1100 $ ha−1), the optimal action involved about 75% of the land allocated
to SW21 and about 25% to Soy14. For higher w0 values, the optimal action
was to allocate the entire area to the double crop enterprise SW21. When
slightly higher amounts of risk aversion are considered (r = 1.5; Figure 2, third
panel from top), the optimal action involved diversification of enterprises for
most values of w0. For low w0, diversification is highest: 60% of the land was
allocated to SW21 and 40% to Soy14. As w0 increases (and, thus, decision
makers can afford higher financial risks), the proportion of land assigned to
SW21 grew until this enterprise occupied the entire area, resembling results for
risk-neutrality. In other words, increasing initial wealth compensates, to some
degree, for the effects of risk aversion. Finally, for a highly risk-averse decision
maker (r = 3.0; Figure 2, bottom panel), the optimal land allocation was
fairly conservative, as maximum crop diversification (comparable proportions
of SW21 and Soy14) prevailed throughout the w0 range.

4.2 Prospect Theory

Landowners

The land allocation that maximized PT’s value for landowners was fairly
similar to results for EU. As for EU, full-cycle soybean Soy14 was the en-
terprise with the largest area (45%). The area allocated to maize (25%) was
again the minimum required by optimization constraints. Unlike EU, though,
three different maize enterprises (Ma21, Ma23, and Ma24) were selected for
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Fig. 2. Land allocation (as proportion of the hypothetical 600-ha farm) that max-
imizes expected utility for land tenants. The four panels show the results for risk
neutrality (r = 0, upper panel), small risk aversion (r = 1.0), moderate risk aversion
(r = 1.5), and pronounced risk aversion (r = 3.0, bottom panel), in each case plotted
as a function of initial wealth w0.

different portions of the parameter space (figure not shown). All three enter-
prises had very similar average returns (113.2, 116.5, and 116.3 $ ha−1 for
Ma21, Ma23, and Ma24, respectively). The maize enterprise with the highest
dispersion (Ma21, SD = 106.8 $ ha−1) prevailed for risk-seeking parameter
combinations, whereas the less variable enterprise (Ma23, SD = 84.1 $ ha−1)
was characteristic of moderate and high-risk aversion. Ma21 only appeared
for intermediate reference wealth and lower risk preferences. Nevertheless,
Kolmogorov–Smirnov tests showed that distributions of economic returns for
the three maize enterprises were not significantly different from one another,
therefore any differences in land allocation to maize can be considered minor.
The wheat–soy double crop (in most cases, enterprise SW21, but also SW20)
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occupied the remaining area. As for EU, results are consistent with the rel-
ative average profitability of each crop. Furthermore, the similarity with EU
results suggests that constraints associated with maintaining the crop rota-
tion prevail over personality characteristics, and thus optimal allocations are
similar even for fairly different objective functions.

Land Tenants

Just as for EU, the land allocation that maximized prospect theory’s value
function for tenants involved two enterprises: full-cycle soybean (Soy14) and
wheat–soybean (SW21). As for EU, the specific proportions of these enter-
prises depended on the combination of parameters. The top-left panel of Fig-
ure 3 (wr = 10 $ ha−1 and λ = 1.00) can be used as a reference to discuss
the consequences of varying prospect theory’s parameters. In this panel, there
is no loss aversion. Also, a low level of reference wealth puts most outcomes
into the domain of gains, where low α values imply a more risk-averse deci-
sion maker. As a result, a diversified land allocation including two enterprises
(Soy14 and SW21) is selected. As α increases and the decision maker becomes
less risk-averse, the allocation switches toward an increasingly higher propor-
tion of the more profitable but riskier SW21, until monoculture is reached.

As we move along the top row of Figure 3, we detect a mixture of the two
dominating enterprises in the central and right-top panels. Nevertheless, there
is always a higher proportion of the less-risky Soy14. The conservative land
allocations reflect the effect of increases in loss aversion. If we move down the
left column of Figure 3, the switch from diversification to a monoculture of
SW21 begins at progressively lower values of α. This is due to the fact that
as wr increases, an increasing proportion of outcomes is perceived as losses,
in which case α indicates risk-seeking. Risk-seeking to risk-neutral decision
makers choose the riskier option (SW21) in search of higher profitability, and
thus enterprise selection in the bottom-left panel is identical to that of risk-
neutral EU maximizers (top panel in Figure 2).

This pattern is also apparent in the middle-bottom panel of Figure 3, where
we now also have loss-aversion (λ = 2.25). The high reference wealth (wr = 80
$ ha−1) implies that a high proportion of outcomes are perceived as losses. For
low α values, the decision maker is more risk-seeking and thus selects riskier
SW21 in order to attain higher profits and get out of the domain of losses.
As α increases, risk-seeking decreases and the selected allocation becomes
diversified, as loss aversion now takes effect. The result is a higher proportion
of the less variable enterprise Soy14. When loss aversion is even stronger, as
in the right column of Fig 3 (λ = 3.50), this effect takes over and dictates
diversification across the whole range of α, and even more so for higher levels
of reference wealth, as more outcomes are in the domain of losses and hence
subject to loss aversion.



72 Guillermo Podestá et al.

Fig. 3. Land allocation (as proportion of the hypothetical 600-ha farm) that max-
imizes prospect theory’s value function for land tenants. The different panels cor-
respond to combinations of wr (reference wealth in $ ha−1, increasing from top to
bottom) and λ (loss aversion parameter, increasing from left to right). In each panel,
the optimal allocation of land is shown as a function of the risk aversion coefficient α.

5 Discussion

Our results demonstrate in a nonlaboratory decision context that, in some
cases, psychologically plausible deviations from EU maximization lead to dif-
ferences in optimal land allocation decisions. As an example, for nominal or
central values of parameters (considered typical of many decision makers), EU
maximization generally suggests that tenants should allocate a much greater
proportion of land to the riskier SW21 enterprise than in PT value maximiza-
tion. The loss aversion that is essential in PT’s formulation dictates more
conservative strategies (predominance of Soy14) for this objective function.
Nevertheless, in situations where there are prescribed constraints to land al-
location (e.g., those associated with maintaining an ecologically sound crop
rotation), results are very similar for quite different objective functions (EU
and PT’s value) and for a broad range of personality and economic charac-
teristics of decision makers. This consistency is an illustration of one of the
important goals of institutions and/or social norms, namely, to make behavior
more predictable.
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Optimization of any utility or value function reflects a tradeoff between
the expected profits of an enterprise and its risk or dispersion of outcomes.
It is interesting to see that different objective functions shape the nature of
this tradeoff in different ways that are consistent with the characteristics of
each function. In EU optimization, more risk-averse land allocation is en-
couraged by differences in risk-aversion as indicated by parameter r, and by
lower initial wealth w0. In contrast, in PT’s value optimization, risk-averse
behavior is encouraged by a lower reference wealth (that divides the percep-
tion of returns into gains versus losses) and much more by the individual
loss aversion parameter λ than by the individual risk preference parameter
α. The importance of loss aversion is not surprising, given the centrality of
this process in PT. Similarly, more risk-seeking land allocation is encouraged
by different processes and parameters under the different objective functions.
For EU maximization, both parameters r (less risk aversion) and w0 (greater
initial wealth) are deciding factors (top panel and right end of middle panel of
Figure 2). In PT value optimization, on the other hand, less risk-averse land
allocations come about when the decision maker has no loss aversion but a
high reference value, with the result that most outcomes are in the domain of
losses, in which choices are either risk-seeking or at best risk-neutral (bottom
left panel of Figure 3).

5.1 Relevance of Results

We envision three main applications of the work presented here. First, an
improved understanding of individual differences in preferences and objective
functions (when they induce different optimal land allocations) may allow the
development of agronomic advice tailored to the personality characteristics of
different types of farmers. Such advice will be more effective than the com-
mon “one size fits all” agronomic recommendations. Second, knowledge of
individual preferences may be helpful to guide the framing and to assess the
acceptability of regional or national policies of agricultural sustainability (e.g.,
policies that encourage crop diversification). Finally, an understanding of pro-
duction decisions in agriculture may contribute to a better understanding and
thus better planning and implementation of a range of related issues, such as
adoption of technological innovations and adaptation to climate change.
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